
Contents

- Literature survey
 - Search terms LPBF, tool steel, heat treatment
 - Articles published in 2020-2022
- VTT Activities
 - Publications
- VTT Near future actions
 - High throughput vision

Literature survey Alloys

- Very common alloy to investigate is H13
- Incremental studies begin with an existing alloy, do changes to composition and report results
- Narvan2021: Laser powder bed fusion of functionally graded bi-materials: Role of VC on functionalizing AISI H13 tool steel
 - Composite powder manufactured with ball milling
- Improved wear resistance and effect on laser absorption

Fig. 6. The optical absorption versus the wavelength for monolithic H13 and composite powders containing 1, 3, and 5 wt% VC. 1070 nm line indicates the wavelength of the laser in the LPBF machine used in this study.

Literature survey Alloys

Saewe21

Chemical Elements [wt %]	С	W	Мо	v	Co	Cr	Si	Fe
HS6-5-3-8	1.23-	5.9-	4.7-	2.7-	8.0-	3.8-	<	Balanced
(1.3294)	1.33	6.7	5.3	3.2	8.8	4.5	0.7	

Tian22, L-40 tool steel developed for LPBF

С	Cr	Ni	Mo	Cu	Nb	N	Fe
0.15	11.2	2.01	1.77	0.75	0.05	0.059	Bal.

Tian21, Uddeholm/Voestalpine Heatvar

Elements	C	Cr	Ni	Mo	Co	S	P	Fe
Nominal	0.03	5.00	2.00	8.00	12.00	< 0.002	< 0.002	balance
ICP	0.03	5.19	2.06	7.78	11.70	0.001	0.001	balance

Bergmueller22, PM HSS S390 Microclean

Elements	Fe	С	w	Мо	v	Co	Cr	Ni	Mn	Si	S	Р	0
wt%	bal.	1.64	10.09	2.28	5.12	8.32	4.91	0.20	0.26	0.30	0.018	0.018	0.0041

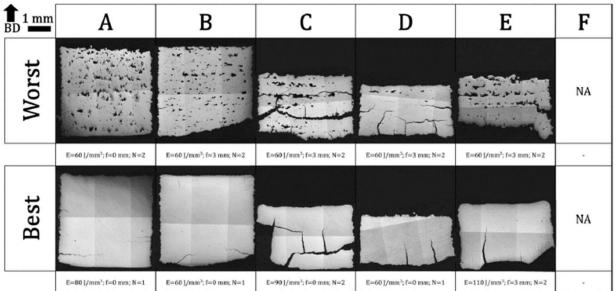
13/10/2022 VTT – beyond the obvious

He21, HSS M2

Element (Wt. Pct)	W	Cr	Mo	Mn	V	Ni	Si	С	Fe
X-8	6.0	4.0	4.7	0.3	1.83	0.25	0.3	0.86	bal.

Platl22_2

	e	С	Si	Mn	Ni	Cr	W	Мо	V	Со
B	al.	0.85	0.53	0.36	0.19	4.25	2.46	2.72	2.01	4.35


Sinico22, M789 maraging steel

Cr	Mo	Ni	Ti	A	
12.20	1.00	10.00	1.00	0.60	

Literature survey Alloys

 Good illustration on what happens when compositional effects cannot be overcome by process parameters

Designation and nominal chemical compositions of the tool steels alloys in wt%. Letters denote the alloy type.

Alloy	Designation	С	Si	Mn	Р	S	Cr	Мо	Ni	V	w	Cu	Co	N	0	Fe	
A	Fe25Co15Mo	0.01	12	12	122	12	102	15	102	12	100	100	25	2	2	Bal.	
в	HS3-3-2-5	0.85	0.53	0.36	0.019	0.011	4.25	2.72	0.19	2.01	2.46	0.1	4.35	0.04	0.004	Bal.	
C	HS6-5-3-8	1.28	0.6	0.29	0.019	0.016	4.04	4.91	0.21	2.97	6.12	0.12	8.19	0.047	0.005	Bal.	
D	HS6-5-4	1.31	0.58	0.29	0.020	0.013	4.07	4.94	0.2	3	6.13	0.13	0.24	0.054	0.003	Bal.	
E	HS6-5-3C	1.34	0.56	0.29	0.023	0.017	3.99	4.92	0.16	3.95	5.43	0.11	0.28	0.061	0.008	Bal.	
F	HS10-2-5-8	1.62	0.31	0.25	0.021	0.013	4.86	1.87	0.26	4.7	10.23	0.12	7.82	0.058	0.004	Bal.	

13/10/2022 VTT – beyond the obvious

Source: Galbusera22: *Processability and cracking behaviour of novel high-alloyed tool steels processed by Laser Powder Bed Fusion*

Literature survey Process

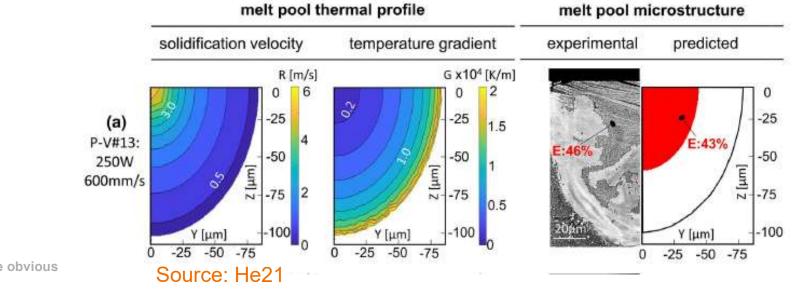
Chemical compositions of tool steels reported in the literature. Each content in the composition is expressed in wt.%.

 When adjusting laser parameters are not enough, elevated platform pre-heat is used

Refs.	Alloy	Processability	С	Si	Mn	Cr	Мо	v	Co	W	Fe
Buls and Humbeeck, 2014; Liu et al. (2011)	M2 HSS	Severe cracking Crack free with BP ¹ at 473 K	0.9	0.35	0.38	3.97	4.89	1.82	2	<mark>6.1</mark> 5	Bal.
Saewe et al. (2020)	HS6-5-8-3	Severe cracking Crack free with BP at 773 K	1.31	0.5	0.3	4.0	4.7	2.9	8.5	6.4	Bal.
Saewe et al. (2019, 2018)	AISI M50	Severe cracking Crack free with BP at 773 K	0.83	0.2	0.25	4.0	4.3	1.05	177	- 	Bal.
Yan et al. (2017)	AISI H13	Lower residual stresses with BP	0.41	1.12	0.41	5.20	1.23	1.10	120	<u>4</u> 23	Bal.
Beal et al. (2008)	AISI H13	Porosity Cracking	0.32-0.42	0.85-1.15	0.4	4.75-5.25	1.25-1.75	0.9-1.1	-	20	Bal.
Mertens et al. (2016)	AISI H13	Crack free and lower residual stresses with BP at 573 K	0.32-0.4	1.0	-	5.13-5.25	1.33– <mark>1.</mark> 4	1.0	-	2	Bal.
Krell et al. (2018)	AISI H13	Cracking Crack free with BP at 573 K	0.39	1.0	0.3	4.9	1.2	1.0		-	Bal.
Narvan et al. (2019)	AISI H13	Cracking Crack free with BP at 573 K	0.39	1.08	0.40	5.27	1.34	0.97	1770		Bal.
Sander et al. (2016)	Fe85Cr4Mo8V2C1	Crack – free with BP at 773 K	1		120	4	8	2	120	<u>2</u> 3	Bal.
Sander et al. (2017a, b)	Fe85Cr4Mo8V1C1	Cra <mark>ck – f</mark> ree with BP at 773 K	1	-	-	4	8	1	-	<u></u>	Bal.
Sander et al. (2017a)	FeCr4Mo1V1W8C1	Crack – free with BP at 773 K	1	-	-	4	1	1	-	8	Bal.
Platl et al. (2020a)		Severe cracking Porosity	0.85	0.53	0.36	4.25	2.72	2.01	4.35	2.46	Bal.

¹ Baseplate Preheating (BP).

13/10/2022 VTT – beyond the obvious

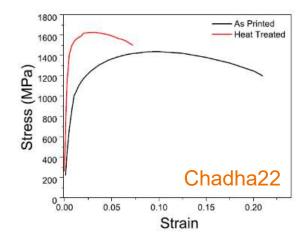

Source: Galbusera22: *Processability and cracking behaviour of novel high-alloyed tool steels processed by Laser Powder Bed Fusion*

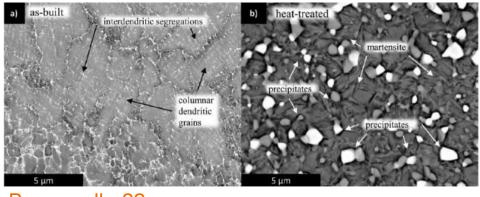
Literature survey Process

- Sinico et al. studied large layer thickness (120um) process of M789 tool steel for improved productivity
 - High relative density (99,6%) was achieved, but poor surface roughness due to thick layers
 - Was mitigated by using hybrid printing with 60um thickness on the surface and 120um internally
- Increasing layer thickness can promote hot cracking but may be helpful in controlling residual stresses due to slower cooling and softer thermal gradient

Literature survey Process

- He21: The Columnar-to-Equiaxed Transition in Melt Pools During Laser Powder Bed Fusion of M2 Steel
 - Microstructure prediction with FEM and Thermo-calc simulations and validation with corresponding process parameters


Literature survey Heat treatments

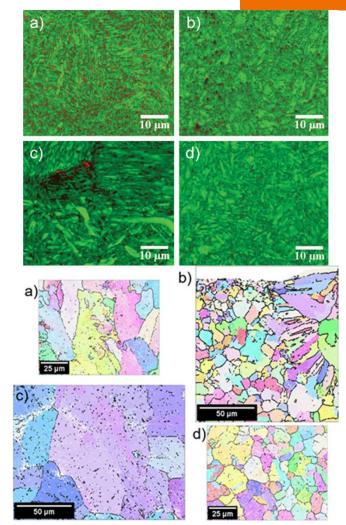

- Residual stress relieving
 - Can be employed in-situ with high enough platform pre-heat
- Solution annealing + aging common for maraging steels
 - Solution annealing also for increased corrosion resistance [Haghdadi21]
 - Common materials 17-4PH, 15-5PH, M300 Maraging steel.
- Direct aging (no solution annealing after printing)
- Tempering
 - Residual austenite removal
 - Carbide precipitation of tool steels [Haghdadi21]

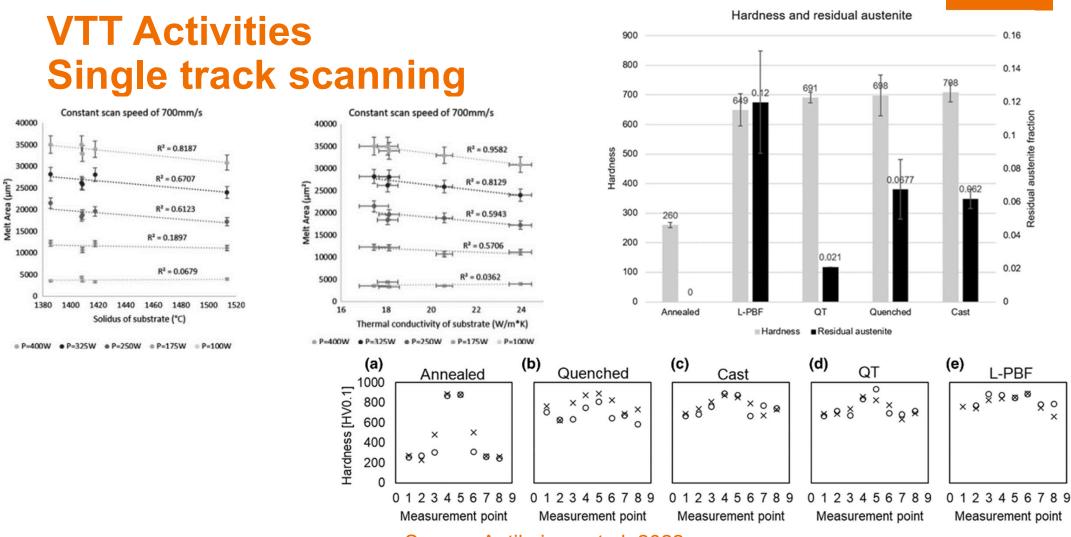
Literature survey Heat treatments

- Chadha22:
 - Austenite fraction of 1,8% in as manufactured state
 - After heat treatment 2h@1030°C → 3h@593°C → 2nd 3h@580°C → 3h@550°C austenite fraction was 0,08%
- Bergmueller22:
 - Crack free processing due to in-situ heat treatment, build platform at 800°C
 - Austenitizing at 1150°C, oil quenching, tempering at 2h@570°C, air cool

Bergmueller22

Literature survey Heat treatments

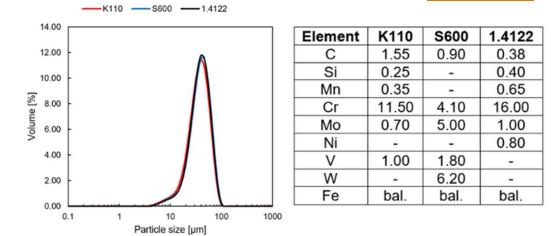

- Tian22: Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion
 - Submicron dendritic structure with 14% residual austenite in as manufactured state
 - After heat treatment mainly martensitic with 1,5% residual austenite

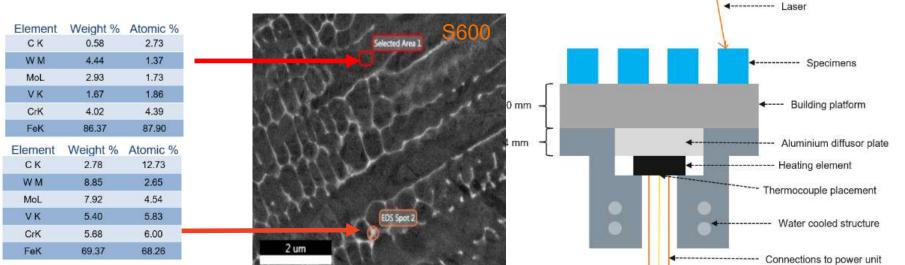

VTT

VTT Activities Single track scanning

- Antikainen, Reijonen, Lagerbom et al.: Single-Track Laser Scanning as a Method for Evaluating Printability: The Effect of Substrate Heat Treatment on Melt Pool Geometry and Cracking in Medium Carbon Tool Steel
- LPBF H13 had much more residual austenite than conventionally quenched samples
- Primary austenite size much larger in LPBF (a) than in conventional (b,d) material

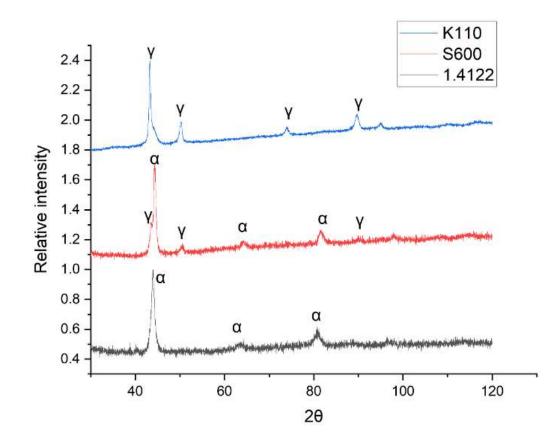
a) LPBF, b) oil quenched, c) copper mold cast, d) oil quenched and tempered once


13/10/2022 VTT – beyond the obvious Source: Antikainen et al. 2022


VTT

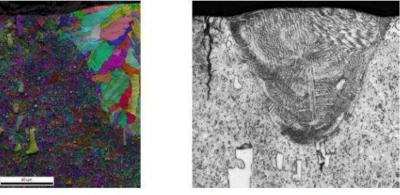
VTT Activities LPBF of tool steels

- Conference paper by Reijonen, Antikainen, Lagerbom et al.
- Printing of in-house atomized tool steels with high pre-heating of 350-380°C

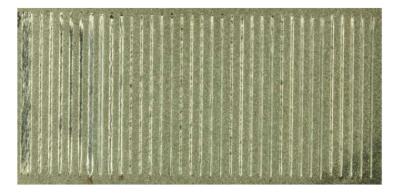


VTT Activities LPBF of tool steels

- Conference paper by Reijonen, Antikainen, Lagerbom et al.
- 1.4122 is ferritic/martensitic
- S600 Ferritic/martensitic with notable residual austenite
- K110 almost entirely austenite


VTT

VTT Activities LPBF of high carbon cold work tool steel


- Unpublished work by Antikainen, Reijonen, Lagerbom
- LPBF of high carbon tool steel D2/K110
- Preliminary tests with single track scanning
- Melt pools OK, cracking only in HAZ

Printable?

С	Si	Mn	Cr	Mo	V
1,55	0,25	0,35	11,50	0,70	1,00

EBSD image of a single laser scan (left) and optical image of a microstructure (right) of D2 tool steel with a crack in the heat-affected zone.

VTT Activities LPBF of high carbon cold work tool steel

- Unpublished work by Antikainen, Reijonen, Lagerbom
- Successfully printed tensile test bars with platform preheating
 - Demo extrusion nozzle
 - An article about heat treatments and mechanical properties to be published this year
- Best Yield strenght >1400MPa
- Best Ultimate tensile strength >1800MPa

VTT Near Future Actions

- Printability, properties and performance based on chemical composition
- High throughput experimental research
 - Sample preparation
 - Arc melting
 - Insstek Multi-material DED
 - Printability estimation and parameter space estimation
 - Single track scanning
 - High Temperature XRD
 - Mechanical properties
 - Tensile testing
 - Heat treatments
 - DSC
 - High Temperature XRD

References

Narvan21: https://doi.org/10.1016/j.matdes.2021.109503 Saewe21: https://doi.org/10.1016/j.addma.2021.102125 Chadha22: https://doi.org/10.1016/j.mtcomm.2022.104332 Bergmueller22: https://doi.org/10.1016/j.heliyon.2022.e10171 He21: https://doi.org/10.1007/s11661-021-06380-9 Haghdadi21: https://doi.org/10.1007/s10853-020-05109-0 Tian22: https://doi.org/10.1007/s40195-022-01461-z Tian21: https://doi.org/10.1016/j.msea.2021.140801 Galbusera22: <u>https://doi.org/10.1016/j.jmatprotec.2021.117435</u> Platl22: https://doi.org/10.1016/j.matchar.2022.112318 Platl22 2: https://doi.org/10.1016/j.actamat.2021.117570 Sinico22: https://doi.org/10.1016/j.procir.2022.08.141 Antikainen22: https://doi.org/10.1007/s11665-022-06826-0

Reijonen22: Laser powder bed fusion of high carbon tool steels, WorldPM, 2022